Welcome to The Visible Embryo
  o
 
The Visible Embryo Birth Spiral Navigation
   
Google  
Fetal Timeline--- -Maternal Timeline-----News-----Prescription Drugs in Pregnancy---- Pregnancy Calculator----Female Reproductive System

   
WHO International Clinical Trials Registry Platform

The World Health Organization (WHO) has a Web site to help researchers, doctors and patients obtain information on clinical trials.

Now you can search all such registers to identify clinical trial research around the world!






Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

News

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.


Content protected under a Creative Commons License.
No dirivative works may be made or used for commercial purposes.

 

Pregnancy Timeline by SemestersDevelopmental TimelineFertilizationFirst TrimesterSecond TrimesterThird TrimesterFirst Thin Layer of Skin AppearsEnd of Embryonic PeriodEnd of Embryonic PeriodFemale Reproductive SystemBeginning Cerebral HemispheresA Four Chambered HeartFirst Detectable Brain WavesThe Appearance of SomitesBasic Brain Structure in PlaceHeartbeat can be detectedHeartbeat can be detectedFinger and toe prints appearFinger and toe prints appearFetal sexual organs visibleBrown fat surrounds lymphatic systemBone marrow starts making blood cellsBone marrow starts making blood cellsInner Ear Bones HardenSensory brain waves begin to activateSensory brain waves begin to activateFetal liver is producing blood cellsBrain convolutions beginBrain convolutions beginImmune system beginningWhite fat begins to be madeHead may position into pelvisWhite fat begins to be madePeriod of rapid brain growthFull TermHead may position into pelvisImmune system beginningLungs begin to produce surfactant
CLICK ON weeks 0 - 40 and follow along every 2 weeks of fetal development




 
Developmental Biology - Axons

How a neuron grows an axon

Scientists unlock new molecular secrets in a mystery...


While the neural architecture responsible for transmission of electrical impulses has been known for more than a century, the basic biology behind how a neuron makes its one and only axon - the component for how impulses are transmitted - is still a mystery.

In a new paper, research at the University of California, Riverside, describes the genetic switches that ignite axon formation. The work focuses on two molecular components - polypyrimidine tract binding protein 2 (PTBP2) and the shootin gene (SHTN1). The work is published in the February issue of Neuron.
"Neurons are distinct from other cells in the body. They are the only cells that can grow a protrusion (the axon) that can become hundreds and thousands of times longer than the cell body itself."

Sika Zheng PhD, Assistant Professor, Biomedical Sciences School of Medicine, University of California, Riverside, USA.

Neurons transfer information through electrical impulses that travel down the long, threadlike axon extending from the neuron's central body. At the end of the axon, the impulse arcs across a gap to the fingerlike dendrite of a neighboring neuron. This spark - a synapse - conveys information from one neural cell to another. It is a complex circuitry which enables every action, emotion, and thought we experience every day.

"As a field, we typically study one gene to understand a phenomenon, but one gene cannot possibly describe everything that is happening to generate an axon," Zheng explains. "Rather than focusing on one gene, we are thinking globally to explore the process that generates the spectacular set of tasks to create the axon."

Previous studies identified more than 150 genes that play a role in axon function. Zheng and his team were surprised to find the overall expression or function, of these genes remains relatively quiet as an axon grows. That presents a question: if these genes are not increasing in quantity, how do they produce axons?

The genes do change in character through a process called alternative splicing. Alternative splicing allows a single gene to produce multiple similar protein isoforms performing different functions. According to Zheng, they transform to handle the task of generating an axon.
PTBP2, a specialized RNA binding protein, takes center stage in the study. In immature neuron cells, it spikes to orchestrate the precise choreography behind splicing events, acting like a switchboard controlling every step of the process producing that one, essential axon.

At the early stage of axon formation, PTBP2 turns on the long isoform of the SHTN1 gene, which promotes growth of the axon. As the neuron matures, PTBP2 is gradually down regulated and the SHTN1 gene switches from the long isoform to the short isoform. Axon growth stops as the neuron and its axon connect to a neural circuit.

"PTBP2 and SHTN1 give us an entry point to understand how splicing changes occur to promote axon growth," says Zheng. "We can use this information to tease out what is happening at the cellular level, and we are only at the tip of the iceberg."

While the study focused on the PTBP2 and SHTN1 genes, Zheng notes that other proteins or genes and their isoforms could also play a role in axon formation. The study was conducted using mouse neural cells, so the team does not yet know if the exact same mechanisms are active in human neural cells. Zheng cautions it may be years before these findings can be translated into therapies.
"Neurodegenerative diseases often manifest through axon degeneration. We need to think about the splicing process to understand axon degeneration and regeneration for future therapies, but there is a lot more work to be done."

Sika Zheng PhD

Highlights
• Axon formation is orchestrated by neural-specific alternative splicing programming
• Early axonogenesis-associated splicing changes are governed by PTBP2
• Splicing-dependent functional changes of SHTN1 in actin binding and polymerization
• PTBP2 depletion impedes axon growth while stimulating axon specification

Summary
How a neuron acquires an axon is a fundamental question. Piecemeal identification of many axonogenesis-related genes has been done, but coordinated regulation is unknown. Through unbiased transcriptome profiling of immature primary cortical neurons during early axon formation, we discovered an association between axonogenesis and neuron-specific alternative splicing. Known axonogenesis genes exhibit little expression alternation but widespread splicing changes. Axonogenesis-associated splicing is governed by RNA binding protein PTBP2, which is enriched in neurons and peaks around axonogenesis in the brain. Cortical depletion of PTBP2 prematurely induces axonogenesis-associated splicing, causes imbalanced expression of axonogenesis-associated isoforms, and specifically affects axon formation in vitro and in vivo. PTBP2-controlled axonogenesis-associated Shtn1 splicing determines SHTN1’s capacity to regulate actin interaction, polymerization, and axon growth. Precocious Shtn1 isoform switch contributes to disorganized axon formation of Ptbp2 -/- neurons. We conclude that PTBP2-orchestrated alternative splicing programming is required for robust generation of a single axon in mammals.

Authors
Ming Zhang, Volkan Ergin, Lin Lin, Cheryl Stork, Liang Chen and Sika Zheng.

Acknowledgements
The study was funded by the National Institutes of Health.

Return to top of page

Feb 6, 2019   Fetal Timeline   Maternal Timeline   News  




(A-B) Single neurons with axons (GREEN).
(C-D) Lengths of axon tracts in mouse brains.
Image: Zheng lab, UC Riverside


Phospholid by Wikipedia