|
CLICK ON weeks 0 - 40 and follow along every 2 weeks of fetal development
|
||||||||||||||||||||||||||||
Developmental Biology - Regenerative Medicine Direction of Nerve Fibers Dictates Head to Toe Axis Abstract Control of axial polarity during regeneration is a crucial open question. We developed a quantitative model of regenerating planaria, which elucidates self-assembly mechanisms of morphogen gradients required for robust body-plan control. The computational model has been developed to predict the fraction of heteromorphoses expected in a population of regenerating planaria fragments subjected to different treatments, and for fragments originating from different regions along the anterior-posterior and medio-lateral axis. This allows for a direct comparison between computational and experimental regeneration outcomes. Vector transport of morphogens was identified as a fundamental requirement to account for virtually scale-free self-assembly of the morphogen gradients observed in planarian homeostasis and regeneration. The model correctly describes altered body-plans following many known experimental manipulations, and accurately predicts outcomes of novel cutting scenarios, which we tested. We show that the vector transport field coincides with the alignment of nerve axons distributed throughout the planarian tissue, and demonstrate that the head-tail axis is controlled by the net polarity of neurons in a regenerating fragment. This model provides a comprehensive framework for mechanistically understanding fundamental aspects of body-plan regulation, and sheds new light on the role of the nervous system in directing growth and form. Author summary Understanding how large-scale anatomy emerges from the activity of cellular pathways is a key goal of evolutionary developmental biology. Elucidating the rules of body-wide morphogenesis is especially essential for transitioning molecular signaling data at the cellular level into advances in regenerative biomedicine. We constructed and analyzed a comprehensive, multiscale computational model to explain the determination of axial polarity during planarian regeneration. Uniquely, our model explains the various head-tail patterning outcomes of a wide range of molecular and physiological manipulations. Testing the novel predictions of this model revealed the nervous system as an instructive regulator of axial patterning. Authors Pietak A, Johanna Bischof, post-doctoral scholar, Joshua LaPalme, research technician, and Junji Morokuma, research associate. The authors have declared that no competing interests exist. Acknowledgements Funding: This work was supported by an Allen Discovery Center award from The Paul G. Allen Frontiers Group (12171). The authors gratefully acknowledge support from the National Institutes of Health (AR055993, AR061988), the G. Harold and Leila Y. Mathers Charitable Foundation (TFU141), National Science Foundation award # CBET-0939511, the W. M. KECK Foundation (5903), and the Templeton World Charity Foundation (TWCF0089/AB55). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. This work was supported by an Allen Discovery Center award from The Paul G. Allen Frontiers Group (12171), the National Institutes of Health (AR055993, AR061988, S10 OD021634), the G. Harold and Leila Y. Mathers Charitable Foundation (TFU141), National Science Foundation award #CBET-0939511, the W. M. KECK Foundation (5903), and the Templeton World Charity Foundation (TWCF0089/AB55). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. About Tufts University Tufts University, located on campuses in Boston, Medford/Somerville and Grafton, Massachusetts, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the university's schools is widely encouraged. Return to top of page | Apr 26 2019 Fetal Timeline Maternal Timeline News A conceptual summary of anterior-posterior axis control in planaria regeneration. CREDIT: Mohammed AlQuraishi, Harvard Medical School.
|