Welcome to The Visible Embryo

Home-- -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than one million visitors each month.

Today, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than 1 million visitors each month. The field of early embryology has grown to include the identification of the stem cell as not only critical to organogenesis in the embryo, but equally critical to organ function and repair in the adult human. The identification and understanding of genetic malfunction, inflammatory responses, and the progression in chronic disease, begins with a grounding in primary cellular and systemic functions manifested in the study of the early embryo.

WHO International Clinical Trials Registry Platform


The World Health Organization (WHO) has created a new Web site to help researchers, doctors and
patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresFemale Reproductive SystemEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterSecond TrimesterFirst TrimesterFertilizationDevelopmental Timeline
CLICK ON weeks 0 - 40 and follow along every 2 weeks of fetal development
Google Search artcles published since 2007
 
Home-- -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs- -- Pregnancy Calculator- --Reproductive System-- News --Contact
News Alerts  May 3, 2013--------News Archive

 

 
The Mesp1 gene is particularly interesting to cardiac researchers because it is believed to be a master regulator, sitting at the pinnacle of a gene hierarchy driving cardiac differentiation, while blocking the differentiation of other cell types.




WHO Child Growth Charts

 

 

 

Discovered! Link between heart, blood, and skeletal muscle

Gene thought to make heart tissues turns out to make blood and muscles as well!

New research out of the Lillehei Heart Institute at the University of Minnesota shows that by turning on just a single gene, Mesp1, different cell types including the heart, blood and muscle can be created from stem cells. The study was published in the journal Cell Stem Cell.

“Previous research indicated that this gene was the “master regulator” for development of the heart, and that its activity prevented the differentiation of other cell types,” said Michael Kyba, Ph.D., associate professor in the University of Minnesota Medical School Department of Pediatrics and a Lillehei endowed scholar. “Our work reveals that this gene acts differently, and that it plays a role in the development of blood and skeletal muscle as well. The outcome depends on the chemical signals that cells expressing this factor sense in their environment.”

The research was conducted in the Kyba Lab by lead author Sunny Chan, Ph.D., a postdoctoral associate in the lab.


Stem cell researchers have been trying to generate different cell types for regenerative medicine for years.

The gene Mesp1 was particularly interesting to cardiac researchers because it was believed to be a master regulator, sitting at the pinnacle of a gene hierarchy driving cardiac differentiation, while blocking differentiation of other cells.


However, this research turns that assumption on its head.

A carefully designed study, aimed at understanding precisely what Mesp1 does at different points in time as stem cells develop, revealed that the gene can do so much more than previously thought.

By turning Mesp1 on and off at specific time windows and fine-tuning the culture environment, stem cells can be coached to become not just heart cells, but also blood and muscle cells.

“This is totally out of the blue, but our discovery brings some conflicting findings about Mesp1 together,” said Chan. “Some previous studies reported Mesp1 could not make heart cells in certain contexts. We now know why.”


The Kyba team further shows Mesp1 is present in the cells that go on to become adult stem cells in the bone marrow which form new blood cells, and stem cells in the skeletal muscles, which form new muscle fibers.


Chan: “We are amazed at what a single gene can do. By understanding what Mesp1 does, we are more likely to make different cell types from stem cells more efficiently. We are one step closer to using stem cell technology for regenerative medicine.”

Funding for this study was provided by National Institutes for Health (NIH) grants U01 HL100407 and R01 AR055685, along with contributions from the American Heart Association-Jon Holden DeHaan Foundation. Additional grants from the NIH support researchers involved in this project: T32 AR007612 and T32 HL069764.

Original article: http://www.health.umn.edu/healthtalk/2013/05/02/mesp1/