Welcome to The Visible Embryo

Home-- -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- -Contact
 

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than one million visitors each month.

Today, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than 1 million visitors each month. The field of early embryology has grown to include the identification of the stem cell as not only critical to organogenesis in the embryo, but equally critical to organ function and repair in the adult human. The identification and understanding of genetic malfunction, inflammatory responses, and the progression in chronic disease, begins with a grounding in primary cellular and systemic functions manifested in the study of the early embryo.

WHO International Clinical Trials Registry Platform


The World Health Organization (WHO) has created a new Web site to help researchers, doctors and
patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresFemale Reproductive SystemEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterSecond TrimesterFirst TrimesterFertilizationDevelopmental Timeline
CLICK ON weeks 0 - 40 and follow along every 2 weeks of fetal development
Google Search artcles published since 2007
 
 

Home | Pregnancy Timeline | News Alerts |News Archive Aug 13, 2013

 

neural stem cells

Ectins project - human fetal neural stem cells.
Human primary fetal brain stem cell, with stem cell nucleus stained blue.
Picture by Prof. John Sinden
Stem Cell Therapies for the Future, European Stem Cell Research
http://ec.europa.eu/research/quality-of-life/stemcells/pressroom.html 







WHO Child Growth Charts

 

 

 

Molecule needed in nerve-cell migration implicated in brain cancer

Brain-tumor cell invasion into surrounding tissue requires the same protein molecule that neurons need to migrate into position while differentiating and maturing.

In new research from the University of Illinois at Chicago College of Medicine and published August 7 in the online journal PLOS ONE, researchers investigated similarities between the transition of neural stem cells into neurons and the process by which cancer cells invade surrounding tissues.

"Both processes involve the mobilization of cells," says Anjen Chenn, director of clinical pathology and molecular diagnostics at UIC. "During embryonic development, stem cells that go on to become neurons must migrate long distances to other parts of the brain before they mature into adult neurons. We thought that this type of cell migration might have similarities with cancer cells that spread from tumors."

Chenn and colleagues analyzed the proteins expressed by embryonic mouse neural stem cells as they began their migration and found that one protein, cadherin11, was in especially high concentrations in transitioning cells.

Chenn believes the protein "regulates how the cells stick to each other and is also important in helping cells pull themselves along certain pathways as they travel to their final destinations."


When researchers overexpressed cadherin11 in embryonic mice, the neural stem cells began to migrate prematurely.

"This confirmed that cadherin11 was involved in the initiation of migration," said Chen.

To determine whether the protein was involved in the invasion of cancer cells into healthy tissues, researchers looked at its function in glioblastoma, the most common and aggressive type of adult brain cancer.

They examined survival data from patients with glioblastoma and noticed that patients whose tumors expressed elevated levels of the cadherin11 gene had the worst survival rates.


"We also saw that in our tissue samples, the tumor cells with high expression of cadherin11 tended to be located near blood vessels, suggesting that the protein could be involved in encouraging blood vessels to enervate tumors," Chenn said.

When Chenn and his colleagues mixed cells from blood vessel walls with human glioblastoma cells, the glioblastoma cells increased their expression of cadherin11.

"We have long known that tumors recruit their own blood supply, but this finding was particularly interesting because it suggests that blood vessels might actually be stimulating tumor cells to come to them," Chenn said. "Our results together indicate that cadherin11 is critical in inducing cell migration in cancer, and could be an important therapeutic target for preventing its spread."

Abstract
Metastasizing tumor cells undergo a transformation that resembles a process in normal development when non-migratory epithelial cells modulate the expression of cytoskeletal and adhesion proteins to promote cell motility. Here we find a mesenchymal cadherin, Cadherin-11 (CDH11), is increased in cells exiting the ventricular zone (VZ) neuroepithelium during normal cerebral cortical development. When overexpressed in cortical progenitors in vivo, CDH11 causes premature exit from the neuroepithelium and increased cell migration. CDH11 expression is elevated in human brain tumors, correlating with higher tumor grade and decreased patient survival. In glioblastoma, CDH11-expressing tumor cells can be found localized near tumor vasculature. Endothelial cells stimulate TGFβ signaling and CDH11 expression in glioblastoma cells. TGFβ promotes glioblastoma cell motility, and knockdown of CDH11 expression in primary human glioblastoma cells inhibits TGFβ-stimulated migration. Together, these findings show that Cadherin-11 can promote cell migration in neural precursors and glioblastoma cells and suggest that endothelial cells increase tumor aggressiveness by co-opting mechanisms that regulate normal neural development.

Jessica Schulte, Jianing Zhang, Lihui Yin, Maya Srikanth, Sunit Das and John Kessler of Northwestern University; Justin Lathia and Jeremy Rich of the Cleveland Clinic, and Eric Olson of the State University of New York, Syracuse, also contributed to this research.

This work was supported by March of Dimes Research Scholars Grant #1-FY10-504, the Wendy Will Case Fund (Chicago, IL), and a Brain Research Fund Seed Grant (Chicago, IL) to A. C., the Northwestern University Flow Cytometry Facility and the Northwestern University Cell Imaging Facility both supported by a Cancer Center Support Grant (NCI CA060553).

Original press release: http://www.eurekalert.org/pub_releases/2013-08/uoia-pii080713.php