Welcome to The Visible Embryo

Home-- -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- -Contact
 

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than one million visitors each month.

Today, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than 1 million visitors each month. The field of early embryology has grown to include the identification of the stem cell as not only critical to organogenesis in the embryo, but equally critical to organ function and repair in the adult human. The identification and understanding of genetic malfunction, inflammatory responses, and the progression in chronic disease, begins with a grounding in primary cellular and systemic functions manifested in the study of the early embryo.

WHO International Clinical Trials Registry Platform


The World Health Organization (WHO) has created a new Web site to help researchers, doctors and
patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

 

Pregnancy Timeline by SemestersFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresFemale Reproductive SystemEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterSecond TrimesterFirst TrimesterFertilizationDevelopmental Timeline
CLICK ON weeks 0 - 40 and follow along every 2 weeks of fetal development
Google Search artcles published since 2007
 
 

Home | Pregnancy Timeline | News Alerts |News Archive Oct 2, 2013

 

Because newborns are known to wiggle and move around, using a
pulse oximeter that is motion tolerant is also important.






WHO Child Growth Charts

 

 

 

Smartphones and tablets could become medical monitors

Do you have a smartphone in your pocket or purse? If so, you may be carrying the future of mobile medical monitoring technology.

According to a special article in the October issue of Anesthesia & Analgesia, official journal of the International Anesthesia Research Society (IARS), smartphones and tablet computers have an emerging role as mobile medical monitoring devices. They may also help extend the use of pulse oximetry for monitoring blood oxygen levels in developing countries around the world, according to the article by Dr J. Mark Ansermino of University of British Columbia, Vancouver. He writes, "The widespread adoption of mobile devices, even in low-resource settings, promises to make vital signs monitoring available anywhere and at low cost."

Today's mobile devices "have the computing capability, display, and battery power to become powerful medical devices that measure vital signs and provide intelligent interpretation or immediate transmission of information," according to Dr Ansermino. He notes that of the nearly six billion mobile phone users worldwide, two-thirds live in developing countries and remote areas.


In particular, mobile devices could increase access to pulse oximetry: the familiar "finger clip" device used to monitor blood oxygen levels (arterial oxygen saturation) during anesthesia and surgery, as well as other medical procedures. In developed countries, pulse oximetry has become so widely used that it has been called the "fifth vital sign" — added to body temperature, pulse rate, blood pressure, and respiratory rate.


But pulse oximetry is still not routinely available in many areas, because of the costs of purchasing, using, and maintaining the monitoring equipment. In those places, cell phones or tablet computers as monitors could provide an effective and economical approach to increasing the availability of blood oxygen measurement.


"The inherent computing power of these devices, and their everyday availability, offer the opportunity to create a stand-alone device that can be used in the home by patients—yet which can also communicate with clinicians in real time,"

Dr Ansermino writes. He notes that previously owned smartphones and tablets could be "repurposed" for use as monitoring devices in developing countries.


Some technologies for mobile pulse oximetry are already in use; commercial modules that can communicate with mobile devices are now in clinical trials. An app that converts the iPhone into a device capable of monitoring pulse oximetry and other vital signs is also available, though not approved for medical use. While the technology still needs to be refined, these types of applications "deliver the promise of pulse oximetry combined with supportive diagnostic and treatment applications into every medical setting and every home," writes Dr Ansermino.

For example, mobile monitoring could be an important tool in reducing deaths from pneumonia in children — still a common event in many resource-poor countries. If mobile pulse oximeters were more widely available, declining blood oxygen levels could be detected more promptly, thus allowing faster intervention.


Mobile pulse oximetry could also improve the ability to identify women at risk of developing pre-eclampsia —a life-threatening complication of pregnancy and delivery.


In addition, modern smartphones and tablets also have the computing power to perform sophisticated analyses of the photophlethysmographic (PPG) data produced by pulse oximeters, potentially providing additional useful information. They could also be used to improve contact with health care providers, as an information resource to guide care, and as an educational tool for patients and health care providers.

"The widespread availability of pulse oximetry on mobile devices will realize the potential of pulse oximetry as both a monitoring and diagnostic tool in a wide range of clinical settings," Dr Ansermino concludes. With continued development of mobile monitoring technology, he foresees a day when "Oxygen saturation will truly become recognized as one of the vital signs."

Abstract
Much more than a telephone, today’s mobile device has become an integral part of the way we interface with the world. Mobile devices have the computing capability, display, and battery power to become powerful medical devices that measure vital signs and provide intelligent interpretation or immediate transmission of information. The widespread adoption of mobile devices, even in low-resource settings, promises to make vital signs monitoring available anywhere and at low cost. This readily available computing power will also extend the utility of vital signs monitoring to new clinical indications, especially with the use of additional processing and integration of information. This review will focus on the universal promotion of pulse oximetry and advanced processing of plethysmography to assess variables such as respiratory rate, capillary refill time, and fluid responsiveness, and how these measurements may assist with perioperative monitoring, diagnosis, and management of pneumonia in children and preeclampsia in pregnancy when combined with mobile devices.

About Anesthesia & Analgesia
Anesthesia & Analgesia was founded in 1922 and was issued bi-monthly until 1980, when it became a monthly publication. A&A is the leading journal for anesthesia clinicians and researchers and includes more than 500 articles annually in all areas related to anesthesia and analgesia, such as cardiovascular anesthesiology, patient safety, anesthetic pharmacology, and pain management. The journal is published on behalf of the IARS by Lippincott Williams & Wilkins (LWW), a division of Wolters Kluwer Health.

About the IARS
The International Anesthesia Research Society is a nonpolitical, not-for-profit medical society founded in 1922 to advance and support scientific research and education related to anesthesia, and to improve patient care through basic research. The IARS contributes nearly $1 million annually to fund anesthesia research; provides a forum for anesthesiology leaders to share information and ideas; maintains a worldwide membership of more than 15,000 physicians, physician residents, and others with doctoral degrees, as well as health professionals in anesthesia related practice; sponsors the SmartTots initiative in partnership with the FDA; and publishes the monthly journal Anesthesia & Analgesia in print and online.

About Wolters Kluwer Health
Wolters Kluwer Health is a leading global provider of information, business intelligence and point-of-care solutions for the healthcare industry. Serving more than 150 countries and territories worldwide, Wolters Kluwer Health's customers include professionals, institutions and students in medicine, nursing, allied health and pharmacy. Major brands include Health Language®, Lexicomp®, Lippincott Williams & Wilkins, Medicom®, Medknow, Pharmacy OneSource®, ProVation® Medical and UpToDate®.

Wolters Kluwer Health is part of Wolters Kluwer, a market-leading global information services company. Wolters Kluwer had 2012 annual revenues of €3.6 billion ($4.6 billion), employs approximately 19,000 people worldwide, and maintains operations in over 40 countries across Europe, North America, Asia Pacific, and Latin America. Follow our official Twitter handle: @WKHealth.

Original press releas: http://www.eurekalert.org/pub_releases/2013-09/ru-msa091013.php